Diagnosis of early stage nasopharyngeal carcinoma using ultraviolet autofluorescence excitation-emission matrix spectroscopy and parallel factor analysis.
نویسندگان
چکیده
We report the diagnostic ability of ultraviolet (UV)-excited autofluorescence (AF) excitation-emission matrix (EEM) spectroscopy associated with parallel factor (PARAFAC) analysis for differentiating cancer from normal nasopharyngeal tissue. A bifurcated fiber-optic probe coupled with an EEM system was used to acquire tissue AF EEMs using excitation wavelengths between 260 and 400 nm, and emission collection between 280 and 500 nm. A total of 152 AF EEM landscapes were acquired from 13 normal and 16 nasopharyngeal carcinoma (NPC) thawed ex vivo tissue samples from 23 patients. PARAFAC was introduced for curve resolution of individual AF EEM landscapes associated with the endogenous tissue constituents. The significant factors were further fed to a support vector machine (SVM) and cross-validated to construct diagnostic algorithms. Both the EEM intensity landscapes and the PARAFAC model revealed tryptophan, collagen, and elastin to be the three major endogenous fluorophores responsible for the AF signal from normal and NPC tissues. The EEM intensity distribution and PARAFAC factors suggest an increase of tryptophan and a decrease of collagen and elastin in NPC tissues compared to the normal. The classification results obtained from the PARAFAC-SVM modeling yielded a diagnostic accuracy of 94.7% (sensitivity of 95.0% (76/80); specificity of 94.4% (68/72)) for normal and NPC tissue differentiation. This study suggests that UV-excited AF EEM spectroscopy integrated with PARAFAC algorithms has the potential to provide clinical diagnostics of early onset and progression of NPC.
منابع مشابه
Organic matter from biofilter nitrification by high performance size exclusion chromatography and fluorescence excitation-emission matrix
A combination of high performance size exclusion chromatography with organic carbon detector and ultraviolet detector coupled with peak-fitting technique and fluorescence excitation-emission matrix spectrometry applied fluorescence regional integration method was conducted to determine the characteristics of organic matter during nitrification. The batch scale of bionet nitrification without or...
متن کاملOptimized endoscopic autofluorescence spectroscopy for the identification of premalignant lesions in Barrett's oesophagus.
OBJECTIVE Fluorescence spectroscopy has the potential to detect early cellular changes in Barrett's oesophagus before these become visible. As the technique is based on varying concentrations of intrinsic fluorophores, each with its own optimal excitation wavelength, it is important to assess the optimal excitation wavelength(s) for identification of premalignant lesions in patients with Barret...
متن کاملCombined Unfolded Principal Component Analysis and Artificial Neural Network for Determination of Ibuprofen in Human Serum by Three-Dimensional Excitation–Emission Matrix Fluorescence Spectroscopy
This study describes a simple and rapid approach of monitoring ibuprofen (IBP). Unfolded principal component analysis-artificial neural network (UPCA-ANN) and excitation-emission spectra resulted from spectrofluorimetry method were combined to develop new model in the determination of IBF in human serum samples. Fluorescence landscapes with excitation wavelengths from 235 to 265 nm and emission...
متن کاملAutofluorescence excitation-emission matrices for diagnosis of colonic cancer.
AIM To investigate the autofluorescence spectroscopic differences in normal and adenomatous colonic tissues and to determine the optimal excitation wavelengths for subsequent study and clinical application. METHODS Normal and adenomatous colonic tissues were obtained from patients during surgery. A FL/FS920 combined TCSPC spectrofluorimeter and a lifetime spectrometer system were used for flu...
متن کاملAutofluorescence Spectroscopy of a Human Gastrointestinal Carcinoma Cell Line - Design of Optical Sensors for the Detection of Early Stage Cancer
Human tissues show autofluorescence (AF) emission spectra when excited by ultraviolet or shortwavelength visible light. The intensity and shape of these spectra are dependent on the tissues pathological state and, therefore, its measurement gives information about the degree of malignant transformations that could lead to cancer. In this article, it is characterized the AF spectra of one human ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Analyst
دوره 136 19 شماره
صفحات -
تاریخ انتشار 2011